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The motion of a mechanical system formed by a rigid body rotating around a fixed point and carrying elastic rods, which undergo 
flexural deformation, i,; investigated. The asymptotic method of constructing approximate equations describing the evolution of 
the system motion in canonical action-angle variables is employed. The method of separating the motions and using the averaging 
operator enables the qualitative features of the behaviour of the system to be investigated, since, as a rule, the equations of motion 
of such systems cannot be integrated in explicit form. © 2000 Elsevier Science Ltd. All rights reserved. 

1. Consider an asymmetrical body with elastic elements in the form of two pairs of rods, situated in 
the equatorial plane of the ellipsoid of inertia, rotating around a fixed point O. The rods are flexible, 
and the flexural deformations are accompanied by energy dissipation. 

We will introduce two Cartesian systems of coordinates: the OXk axes (k = 1, 2, 3) are fixed, the OX3, 
axis is directed vertically upwards, and the OZk axes are connected with the principal axes of inertia of 
the body, where OZ3 is the axis of natural rotation of the body. In the OZ1Z2 plane two pairs of flexible 
rods are placed along the principal axes of the ellipsoid of inertia OZ1 and OZ2. The rods are deformed 
during the motion. The potential energy functionals of elastic deformations and dissipative forces are 
found from the formulae 

2 2 

N j x x (, a2 ) d,, ntul= b  -I 
EIu] = ~ v i=l j=t 

(1.1) 

where N is the bending stiffness of the rod, X is a constant characterizing the energy dissipation in the 
rod on bending, b is a dimensional constant, and uO.(s, t)(i - 1, 2; j = 1, 2, 3) is the deviation of the 
cross-section of one of the rods with coordinate s on bending with respect to the corresponding axis. 
The vector u(s, t) is taken to be equal to ul and u2. 

We will write the equations of motion of the system in the form 

fv = V tR(l,w,u, fi) 

0 

= - V w R ( l , w , u , u ) ,  

dV. . .R-V.R=-Q~,  
(1.2) 

where Q~ are the dissipative forces. 
The Routh fun.ctional R(I, w, u, ti), describing the motion of the system, is given by the formula 

R = / [ G - G u ,  J - ' [ u ] ( G - G u ) ] - l ~  (u~ +dl)pds+ E[u] (1.3) 
Z v  

2 
G. = I E (rx~)pas 

K /=1 

where G is the angular momentum vector. 
Using the linear theory of the bending of think rectilinear rods, the radius vector of a point of the 

rod in the OZk system can be represented in the form [2, 3] 
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q +u~ = s e  x + u i 2 ( $ , / ) e  2 + u l s ( s , t ) % ,  r~ = s e  t 

r~ + u 2  = u~2(s, t)e t + se2 + u~3(s , t )%,  r~ = s e 2  
s ~ V = [ - I , - a ] ~ [ a , l ]  

(1.4) 

where ek (k = 1, 2, 3 ) is the unit vector of the OZk axis, l are constants, and p is the density of the 
rod material, assumed to be uniform. 

The inertia tensor J[u] of the system, consisting of the rigid body and the deformed rods, is considered 
in a moving system of coordinates. We will write the inertia tensor assuming that uii are small quantities, 
and hence we can confine ourselves to terms that are linear in uij. We obtain 

j-X[u] = j o  i - j o I  J t j o  f 

Jo=diag{A,B,C}, A=At + f[u2], B=I~ + f[ul], C=Cl + f[ul]+ f[u 2] 
i 

f[uil  = I (2sui + u/2)pals, (i = l, 2) 
-1 

(J1 is the component of the inertia tensor linear with respect to u). 
We will represent the Routh function as follows 

R = R o + £ R x  + . . . .  ~ = b N  -1 

where R0 is a function describing the unperturbed motion of the body, assuming that the rods are not 
deformed (u=0) and e is a small dimensionless parameter. 

2. The unperturbed motion (e = 0) of an asymmetrical body (A ~= B ,  C) is described by the equations 
of rotation of a solid in the Euler case. We will use the canonical action-angle variables I1, 12,/3, 
wl, w2, wa as the variables [1]. When introducing the action-angle variables the initial variables are the 
Andoyer variables L,/2,/3, 1, ~02, %. When e = 0 the modulus of the kinetic moment 12, and also the 
canonically conjugate variables/3, %, which specify the position of this vector in the OXk axes, are 
constant quantities. We will introduce the following parameters into the unperturbed problem 

A ( B -  C)" C "~2 - - 2 ~  (2.1) 

where h is the energy constant. The values ~, -- 0, X -- oo, ~. = 1 correspond to rotations of the body 
around the major axis (OX3), the minor axis (09(1) and the middle axis (OX2) of the ellipsoid of inertia. 

We will investigate the problem in the regions of rotational motions (X ~ 1) with the condition that the 
rotation frequencies of the body are incommensurable, i.e. k% = 0 (k = 1, 2), where k is an integral vector, 
is only satisfied when k = 0. In these regions of motion the action-angle variables are given by the formulae 

I ,=  ~ . / 1 2 + ~ 2 2  [(~2 + ~.2)II(x2, ~.) - ~? K(~.)] 

(2.2) 

~ F({,X), w2=~2+21n e4(wl-ia) 
wj = 2K(~.'~--~ 0 4 ( w  x + i o )  

~=+am(xx,~,), a = 2 K ( X  ) arctg , X' 

xx = 2 K 0 . )  w~, X 2 = __C(A - B) ~2 = 2X2 . /2 - Ix 
A ( B -  C)  " 12 41 + X2 

where K(~), rI(~, ~.) are the complete elliptic integrals of the first and third kind respectively, F(~, ~) 
is the incomplete elliptic integral of the first kind, 04 is the Jacobi theta function, and ~,(I 1,/2) is the 
single-valued solution of the equation for 11 from (2.2) with respect to L. 
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We will also write the Routh function for unperturbed motion for arbitrary A, B and C in action- 
angle variables in the form 

2A u A Z2+~? 

The canonical equations of unperturbed motion with the function R0 can be integrated, and the general 
solution has the form 

l, = !,.; ~, = ~ , ,  + ~ o  w2 = ~2, + w °, w~ = w~ 
The frequencies of unperturbed motion are given by the following expressions [4] 

(2.3) 

uo(+a, t) = = o 

The solution describing the forced vibrations of the rods will be sought in the form of a series in the 
small parameter ~: = N -1 

Ui j = F.,U(I) ~2. (2) + c u q  + .... i=1,2; j= ! ,2 ,3 ;  i # j  

The functions uij 'satisfy the equation 

,, O4U(I) 
(! + xb~t  ) ~  + ½(G.V,, 0 J- ' ,u]G)+ ~t  [J-t[u,G × (ri + u/,]pe / =0  (2.6) 

The action I - ;angle w equations (2.6) can be written in canonical variables as follows: 

4 .11) "-,5 (I) 
a .# -.b o uq +j; ~ = f i / s ,  i=1,2; j=1,2,3;  i * j  (2.7) 

The functions o§/ are defined by the relations 

1i2 = -F--b..0b~.0 sin 2nw I, fl3 = Zb. ,oFcosnwl,  f23 = Eb~,,oFsin nwl 

,,=[ ~!2 A-C Z ] 
[2K(~.) AC 4(1+X2)(~. 2 +X 2) 

! 2 It qm+U2 12 I I  ig,~ J X2 + 1 qm+ll2 
b,.o "A" K(~).JI~'2+X 2 l + q  2m+|' b: '°=- 'B K(~.)~-~ l - q  2m+l 

q = exp[-zK'0.) / K(k)] 

a2uo(+-l,t) a3uij(+_'l, t) auiJ(z!:a't) = O, = 
as as 2 as 3 

The boundary conditions for the funtion ui/(s, t) are given in the form 

c - a  4 1 + z ~ ! ~  ~ C - A  I,!~ _ , .m:~  
o~,= A C  x 2 ' o)2 = ; x = ~ ,  , ~, I ~ + 2 1 1  

(2.4) 
A 2AC x 

Flexural vibrations of the rods in the perturbed motion are described by the second of the equations 
of system (1.1) 

32Ui; 041ii ' 05Uij d -I p~+u~+xNa-E~7,+gI] [ . ] ( c - G . ) ( ~ , .  + u , ) ] o . ~ +  

+ 2 I-- ((G - G.)V.0 J-t [u](G - G u)) + [j-i [u]!G - G . )up]e /=  0, i = 1, 2; 
(2.5) 

j = 1,2.3; i ~ j  
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where n = 2m+l ,  and the summation is carried out over all integer m from --oo to +oo. 
Suppose Uijo is the solution of Eq.(2.7) for Z = 0. Then, the particular solution describing forced flexural 

vibrations of the rods has the form 

-,k (I) 
u~ 1)= ~, ( -X)  k °  uiJ 

k=0 ~t k 

S 5 12S 3 13S2 
u(I) ~ ( s )  = - -  - -  + s ign s ( 2 .8 )  

q = f q¥ ( s ) ,  120 12 6 

The function ~g(s) is determined for the boundary conditions 

uij0(0,t)= u ~ ( O , t ) = O  

( t h e  clamping conditions at the origin of coordinates, where for simplicity a = 0) and the dynamic 
boundary conditions 

32 /)3 o) + - 0 
~s 2 u ~ ( + l ,  t) = ~s--y %0 ( - / ,  t) - 

Note that the solutions of Eq.(2.7) are found by the method of separation of the motions, provided 
that the canonical action-angle variables correspond to the unperturbed problem. 

Confining ourselves in series (2.8) to the first two terms, we have 

u/~ I) = "iio" ( I ) _  X,~/~ (2 .9 )  

We will write the equations of perturbed motion of the system, substituting the displacement 
Uij = E UQ ) into Eqs (1.2) l! 

II = -V wl = -Zb,.0n sin nw I ~ su23pds - Y-.b~.on cos w! f sti! 3pds - 

-Zb,.0b,L 0 sin 2nw I ~ s(ul2 + u21)pds + T.nb~.ofi' I sin n w  I ~ sul3pds + (2.10) 

+,~,nb~.0 fi, I COS n w  I f su23Pds 

/ i= -VwiR=0 ,  i=2 ,3 ;  ~i , j=Vt~R,  j=1 ,2 ,3  

It follows from these equations that the value of the kinetic moment vector I 2 and its projection onto 
the 0)(3 axis retain their values, whereas the action variable 11 depends on the elastic vibrations and 
the dissipative forces, leading to the evolution of the system. 

3. Applying the averaging operator with respect to the angular variables w 1 and a to Eqs(2.10), we 
obtain, after calculation, the following averaged system of equations 

,2 2 ,2 A - C ~ & x n  Z(b.2.o - b~.o - Z(b; .o  - b~.o) {J,)=*(s) X ~4-C K(~,)~/(i+X2)(~2+Z2 ) 

( i i)=0,  i=2,3; dP(sl=lv(s)pds 

(3.1) 

We will obtain the steady solutions of Eq.(3.1) assuming that (I1) = 0. Up to terms in L 2 we obtain 

J -- o (3.2) 

We will write the coefficients of the first terms of the expansion occurring in expression (3.2) 
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.. 2 (2X 2+k ' )  ;¢ 16(1-~.) 
b ° ° "4+X2~ ,  X 2 ) '  bl.o=4+X'"- ~ '  b2.o=7,,(2¢_X2 ) 

b6. o = (2X 2 + X2)(2 +X 2) , (2 +E)X , 8(2 + X2)(1-~,) 
X(4+2L2) ' bl.o = 2Z2(4+~.2), b2. o = Z(X_Z2) 

Substituting into these coefficients the expression 

~2 = 2X2 12 - / I  
12 41 + X 2 

which is the single-valued solution of the equation for 11 (up to terms in X2), which occurs in (2.2), 
after calculation we obtain expressions for the coefficients, which depend explicitly on the action 
variables I i. 

We will write relation (3.2) as follows: 

a, (s )  l z  I w ~ Q -  Q~ --- o 

Hence, we can obtain the value of the angular velocity of rotation of the body around the natural 
axis of rotation 

_ d _  a~l_ , Q=y.(b2.0 ,2 2 -,2 tD! _ • _ b~.0) , QI = Xb~.0l,~. 0 )Q 

It can be seen that the limit values for the action variables and the angular velocity of rotation around 
the axis of natural rotation depend on the deformations of the rods and the dissipative forces. 

By considering the case of a dynamically symmetrical body (A = B) in this formulation of the problem, 
we obtain that, at file stage of the first approximation, the evolution of the motion is identical with the 
results obtained in similar investigations in Andoyer canonical variables [2, 3]. 
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